ttnn.addalpha
- ttnn.addalpha = Operation(python_fully_qualified_name='ttnn.addalpha', function=<ttnn._ttnn.operations.binary.addalpha_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_addalpha>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes addalpha for
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
.\[\mathrm{{output\_tensor}} = \mathrm{{input\_tensor\_a\ + input\_tensor\_b\ * \alpha}}\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
alpha (float) – the value to be multiplied.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> alpha = 1.0 >>> output = ttnn.addalpha(tensor1, tensor2, alpha)