ttnn.addcdiv_bw
- ttnn.addcdiv_bw(grad_tensor: ttnn.Tensor, input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, input_tensor_c: ttnn.Tensor, alpha: float, *, memory_config: ttnn.MemoryConfig | None = None) List of ttnn.Tensor
-
Performs backward operations for addcdiv of
input_tensor_a
,input_tensor_b
andinput_tensor_c
with givengrad_tensor
.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
input_tensor_c (ttnn.Tensor) – the input tensor.
alpha (float) – the alpha value.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
TILE
2, 3, 4
For more details about BFLOAT8_B, refer to the BFLOAT8_B limitations.
Example
>>> value = 1.0 >>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.addcdiv_bw(grad_tensor, tensor1, tensor2, tensor3, value)