ttnn.experimental.cumprod
- ttnn.experimental.cumprod = Operation(python_fully_qualified_name='ttnn.experimental.cumprod', function=<ttnn._ttnn.operations.experimental.cumprod_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=None, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
ttnn.Tensor, dim: int) -> ttnn.Tensor
Returns a tensor witth cumulative product calculated along a given axis (dim).
- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor to calculate cumulative product of.
dim (int) – axis of product cumulation.
- Keyword Arguments:
-
queue_id (int, optional) – command queue’s ID, defaults to 0.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor (for now, it is a copy of input_tensor, because only scaffold is implemented).
Example
>>> # return a ref
>>> tensor = ttnn.from_torch(torch.tensor((1, 2, 3), dtype=torch.bfloat16), device=device) >>> # Note that the call below will output the same tensor it was fed for the time being, >>> # until the actual implementation is provided. >>> output = ttnn.experimental.cumprod(tensor, 1) >>> assert tensor.shape == output.shape >>> assert tensor.dtype == output.dtyoe
>>> # preallocation and return another ref
>>> tensor = ttnn.from_torch(torch.tensor((1, 2, 3), dtype=torch.uint8), device=device) >>> # Note that the call below will output the same tensor it was fed for the time being, >>> # until the actual implementation is provided. >>> tensor_copy = ttnn.zeros_like(tensor) >>> output = ttnn.experimental.cumprod(tensor, 1, out=tensor_copy) >>> assert tensor.shape == output.shape >>> assert tensor.dtype == output.dtype >>> assert tensor.shape == output.shape >>> assert tensor.dtype == output.dtyoe
- Type:
-
cumprod(input_tensor