ttnn.hardswish
- ttnn.hardswish(input_tensor: ttnn.Tensor, *, scale: float | None = 0.16666667, shift: float | None = 0.5, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor
-
Performs hardswish function on
input_tensor
,scale
,shift
.- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
scale (float, optional) – Scale value. Defaults to 0.16666667.
shift (float, optional) – Shift value. Defaults to 0.5.
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.hardswish(tensor, scale = 0.16666667, shift = 0.5)