ttnn.logical_and_
- ttnn.logical_and_ = Operation(python_fully_qualified_name='ttnn.logical_and_', function=<ttnn._ttnn.operations.binary.logical_and__t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes inplace logical AND of
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{{input\_tensor\_a}}_i \& \mathrm{{input\_tensor\_b}}_i\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[2, 2], [2, 2]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 1], [1, 1]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> ttnn.logical_and_(tensor1, tensor2)