ttnn.polyval
- ttnn.polyval = Operation(python_fully_qualified_name='ttnn.polyval', function=<ttnn._ttnn.operations.binary.polyval_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_polyval>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes polyval of all elements of
input_tensor_a
with coefficientscoeffs
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{output\_tensor} = \sum_{i=0}^{n} (\mathrm{coeffs}_i) (\mathrm{input\_tensor}^i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
Coeffs (Vector of floats) – coefficients of the polynomial.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> coeffs = [1, 2, 3, 4] >>> output = ttnn.polyval(tensor, coeffs)