ttnn.rdiv_bw
- ttnn.rdiv_bw(grad_tensor: ttnn.Tensor, input_tensor_a: ttnn.Tensor, scalar: float, *, round_mode: string | None = None., memory_config: ttnn.MemoryConfig | None = None) List of ttnn.Tensor
-
Performs backward operations for Unary rdiv on
input_tensor
,scalar
with givengrad_tensor
using givenround_mode
.round_mode
can be ‘None’, ‘trunc’, or ‘floor’.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor_a (ttnn.Tensor) – the input tensor.
scalar (float) – divisor.
- Keyword Arguments:
-
round_mode (string, optional) – Mode of Rounding. Defaults to None.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Performance of the PCC may degrade when using BFLOAT8_B. For more details, refer to the BFLOAT8_B limitations.
Example
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> input = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> scalar = 0.5 >>> output = ttnn.rdiv_bw(grad_tensor, input, scalar, round_mode = None)