ttnn.rpow

ttnn.rpow(input_tensor: ttnn.Tensor, exponent: float, *, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor

Performs rpow function on input_tensor, exponent.

Parameters:
  • input_tensor (ttnn.Tensor) – the input tensor. Supported for input range upto 28

  • exponent (float) – exponent value. Non-positive values are not supported.

Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.

Returns:

ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

System memory is not supported.

Example

>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device)
>>> exponent = 2
>>> output = ttnn.rpow(tensor, exponent)