ttnn.rpow
- ttnn.rpow(input_tensor: ttnn.Tensor, exponent: float, *, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor
-
Performs rpow function on
input_tensor
,exponent
.- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor. Supported for input range upto 28
exponent (float) – exponent value. Non-positive values are not supported.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
System memory is not supported.
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> exponent = 2 >>> output = ttnn.rpow(tensor, exponent)