ttnn.rpow_bw

ttnn.rpow_bw(grad_tensor: ttnn.Tensor, input_tensor: ttnn.Tensor, exponent: float, *, memory_config: ttnn.MemoryConfig | None = None) List of ttnn.Tensor

Performs backward operations for rpow on input_tensor, exponent with given grad_tensor.

Parameters:
  • grad_tensor (ttnn.Tensor) – the input gradient tensor.

  • input_tensor (ttnn.Tensor) – the input tensor.

  • exponent (float) – Exponent value.

Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

Returns:

List of ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16, BFLOAT8_B

TILE

2, 3, 4

Example

>>> grad_tensor = ttnn.to_device(ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16)), device=device)
>>> input = ttnn.to_device(ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16)), device=device)
>>> output = ttnn.rpow_bw(grad_tensor, input, float)