ttnn.sum
- ttnn.sum(input_a: ttnn.Tensor, dim: number, keepdim: bool = False, *, memory_config: ttnn.MemoryConfig = None, compute_kernel_config: ttnn.ComputeKernelConfig = None, scalar: float = 1.0, correction: bool = True) ttnn.Tensor
-
Computes the sum of the input tensor
input_aalong the specified dimensiondim. If no dimension is provided, sum is computed over all dimensions yielding a single value.- Parameters:
-
input_a (ttnn.Tensor) – the input tensor. Must be on the device.
dim (number) – dimension value to reduce over.
keepdim (bool, optional) – keep original dimension size. Defaults to False.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
compute_kernel_config (ttnn.ComputeKernelConfig, optional) – Compute kernel configuration for the operation. Defaults to None.
scalar (float, optional) – A scaling factor to be applied to the input tensor. Defaults to 1.0.
correction (bool, optional) – Applies only to
ttnn.std()- whether to apply Bessel’s correction (i.e. N-1). Defaults to True.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
The input tensor supports the following data types and layouts:
Input Tensor dtype
layout
FLOAT32
ROW_MAJOR, TILE
BFLOAT16
ROW_MAJOR, TILE
BFLOAT8_B
ROW_MAJOR, TILE
The output tensor will match the data type and layout of the input tensor.
- Memory Support:
-
Interleaved: DRAM and L1
Sharded (L1): Width, Height, and ND sharding
Output sharding/layout will mirror the input
Example
input_a = ttnn.rand(1, 2), dtype=torch.bfloat16, device=device) output = ttnn.sum(input_a, dim, memory_config)