ttnn.threshold_bw

ttnn.threshold_bw(grad_tensor: ttnn.Tensor, input_tensor: ttnn.Tensor, threshold: float, value: float, *, memory_config: ttnn.MemoryConfig | None = None) List of ttnn.Tensor

Performs backward operations for threshold on input_tensor, threshold, value with given grad_tensor.

Parameters:
  • grad_tensor (ttnn.Tensor) – the input gradient tensor.

  • input_tensor (ttnn.Tensor) – the input tensor.

  • threshold (float) – the input threshold value.

  • value (float) – the input value.

Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

Returns:

List of ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

Example

>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> input = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> threshold = 1.0
>>> value = 1.0
>>> output = ttnn.threshold_bw(grad_tensor, input, threshold, value)