ttnn.where_bw

ttnn.where_bw(grad_tensor: ttnn.Tensor, input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, input_tensor_c: ttnn.Tensor, *, are_required_outputs: List[bool] | None = [True, True], memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) List of ttnn.Tensor

Performs backward operations for where of input_tensor_a, input_tensor_b and input_tensor_c with given grad_tensor.

Parameters:
Keyword Arguments:
  • are_required_outputs (List[bool], optional) – list of required outputs. Defaults to [True, True].

  • memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

  • output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.

  • queue_id (int, optional) – command queue id. Defaults to 0.

Returns:

List of ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16, BFLOAT8_B

TILE

2, 3, 4

Example

>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 0], [1, 0]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.where_bw(grad_tensor, tensor1, tensor2, tensor3)