ttnn.where_bw
- ttnn.where_bw(grad_tensor: ttnn.Tensor, input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, input_tensor_c: ttnn.Tensor, *, are_required_outputs: List[bool] | None = [True, True], memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) List of ttnn.Tensor
-
Performs backward operations for where of
input_tensor_a
,input_tensor_b
andinput_tensor_c
with givengrad_tensor
.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
input_tensor_c (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
are_required_outputs (List[bool], optional) – list of required outputs. Defaults to [True, True].
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor1 = ttnn.from_torch(torch.tensor([[1, 0], [1, 0]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.where_bw(grad_tensor, tensor1, tensor2, tensor3)