ttnn.glu
- ttnn.glu(input_tensor: ttnn.Tensor, dim: int = -1, *, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor
-
Applies glu to
input_tensor
element-wise.Split the tensor into two parts, apply the GLU function on the second tensor, and then perform multiplication with the first tensor.
\[\mathrm{output\_tensor}_i = \verb|glu|(\mathrm{input\_tensor}_i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
dim (int) – Dimension to split input tensor. Supported only for last dimension (dim = -1 or 3). Defaults to -1.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
4
System memory is not supported.
Last dimension of input tensor should be divisible by 64.
Example
>>> tensor = ttnn.from_torch(torch.rand([1, 1, 32, 64], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> dim = 3 >>> output = ttnn.glu(tensor, dim)