ttnn.max_pool2d

ttnn.max_pool2d(input_tensor_a: ttnn.Tensor, batch_size: int, input_h: int, input_w: int, channels: int, kernel_size: List of [int], stride: List of [int], padding: List of [int], dilation: List of [int], *, memory_config: ttnn.MemoryConfig | None = None, applied_shard_scheme: ttnn.TensorMemoryLayout | None = None, ceil_mode: bool | None = False, queue_id: int | None = 0) ttnn.Tensor

Applies a max pool convolution to the input tensor. The resulting output Tensor will contain the maximum value for each channel within a kernel window. The input tensor is expected to be in [NHW, C] format and should be on the device. Height, width and block sharding schemes are supported.

Parameters:
  • input_tensor_a (ttnn.Tensor) – the tensor to be convolved.

  • batch_size (int) – the number of batches (N in a [N, C, H, W] shaped tensor).

  • input_h (int) – the height of the input tensor (H in a [N, C, H, W] shaped tensor).

  • input_w (int) – the width of the input tensor (W in a [N, C, H, W] shaped tensor).

  • channels (int) – the number of channels (C in a [N, C, H, W] shaped tensor).

  • kernel_size (List of [int]) – the (h, w) size of the kernel window.

  • stride (List of [int]) – the (h, w) stride of the kernel window.

  • padding (List of [int]) – the (h, w) padding of the input tensor.

  • dilation (List of [int]) – the (h, w) dilation of the kernel window.

Keyword Arguments:
  • memory_config (ttnn.MemoryConfig, optional) – the memory configuration for the output tensor. Defaults to None.

  • applied_shard_scheme (ttnn.TensorMemoryLayout, optional) – the sharding scheme to apply to a non-pre-sharded input tensor. Defaults to None, which should be used with pre-sharded input tensors.

  • ceil_mode (bool, optional) – whether to use ceil mode for the output shape. Defaults to False.

  • queue_id (int, optional) – the queue id to use for the operation. Defaults to 0.

Returns:

ttnn.Tensor – the max pool convolved output tensor.

Example

>>> import ttnn
>>> import torch
>>> device = ttnn.CreateDevice(0, l1_small_size=8192)
>>> kernel_h, kernel_w = 2, 2
>>> stride_h, stride_w = 1, 1
>>> pad_h, pad_w = 0, 0
>>> dilation_h, dilation_w = 1, 1
>>> nchw_shape = (4, 256, 40, 40)
>>> in_N, in_C, in_H, in_W = nchw_shape
>>> input_shape = (1, 1, in_N * in_H * in_W, in_C)
>>> input = torch.randn(nchw_shape, dtype=torch.bfloat16)
>>> input_perm = torch.permute(input, (0, 2, 3, 1)) # this op expects a [N, H, W, C] format
>>> input_reshape = input_perm.reshape(input_shape)
>>> tt_input= ttnn.from_torch(input_reshape, ttnn.bfloat16)
>>> tt_input_dev = ttnn.to_device(tt_input, device)
>>> tt_output = ttnn.max_pool2d(
                    input_tensor=tt_input_dev,
                    batch_size=in_N,
                    input_h=in_H,
                    input_w=in_W,
                    channels=in_C,
                    kernel_size=[kernel_h, kernel_w],
                    stride=[stride_h, stride_w],
                    padding=[pad_h, pad_w],
                    dilation=[dilation_h, dilation_w],
                    memory_config=None,
                    applied_shard_scheme=ttnn.TensorMemoryLayout.BLOCK_SHARDED,
                    ceil_mode=False,
                )