ttnn.slice
- ttnn.slice(input_tensor, slice_start, slice_end, slice_step) ttnn.Tensor
-
Returns a sliced tensor. If the input tensor is on host, the slice will be performed on host, and if its on device it will be performed on device.
- Parameters:
-
input_tensor – Input Tensor.
slice_start – Start indices of input tensor. Values along each dim must be < input_tensor_shape[i].
slice_end – End indices of input tensor. Values along each dim must be < input_tensor_shape[i].
slice_step – (Optional[List[int[tensor rank]]) Step size for each dim. Default is None, which works out be 1 for each dimension.
- Keyword Arguments:
-
tensor (memory_config Memory Config of the output) –
queue_id (uint8, optional) –
- Returns:
-
ttnn.Tensor – the output tensor.
Example
>>> tensor = ttnn.slice(ttnn.from_torch(torch.zeros((1, 1, 64, 32), dtype=torch.bfloat16), device=device), [0, 0, 0, 0], [1, 1, 64, 16], [1, 1, 2, 1]) >>> print(tensor.shape) [1, 1, 32, 16] >>> input = ttnn.from_torch(torch.zeros((1, 1, 64, 32), dtype=torch.bfloat16), device=device) >>> output = ttnn.slice(input, [0, 0, 0, 0], [1, 1, 32, 32]) >>> print(output.shape) [1, 1, 32, 32]