ttnn.addcdiv
- ttnn.addcdiv(input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, input_tensor_c: ttnn.Tensor or Number, *, value: float | None, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor
-
Computes Addcdiv on
input_tensor_a
,input_tensor_b
andinput_tensor_c
and returns the tensor with the same layout asinput_tensor_a
- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
input_tensor_c (ttnn.Tensor or Number) – the input tensor.
- Keyword Arguments:
-
value (float, optional) – scalar value to be multiplied.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
bfloat8_b/bfloat4_b supports only on TILE_LAYOUT
Example
>>> value = 1.0 >>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.addcdiv(tensor1, tensor2, tensor3, value)