ttnn.addcdiv

ttnn.addcdiv(input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, input_tensor_c: ttnn.Tensor or Number, *, value: float | None, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor

Computes Addcdiv on input_tensor_a, input_tensor_b and input_tensor_c and returns the tensor with the same layout as input_tensor_a

Parameters:
Keyword Arguments:
  • value (float, optional) – scalar value to be multiplied.

  • memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

Returns:

ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

bfloat8_b/bfloat4_b supports only on TILE_LAYOUT

Example

>>> value = 1.0
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.addcdiv(tensor1, tensor2, tensor3, value)