ttnn.div_bw
- ttnn.div_bw(grad_tensor: ComplexTensor or ttnn.Tensor, input_tensor_a: ComplexTensor or ttnn.Tensor, input_tensor_b: ComplexTensor or ttnn.Tensor or Number, *, round_mode: str | None = None, are_required_outputs: List[bool] | None = [True, True], memory_config: ttnn.MemoryConfig | None = None, input_grad: ttnn.Tensor | None = None, other_grad: ttnn.Tensor | None = None, queue_id: int | None = 0) List of ttnn.Tensor
-
Performs backward operations for divide on
input_tensor
,alpha
orinput_tensor_a
,input_tensor_b
,round_mode
, with givengrad_tensor
.- Parameters:
-
grad_tensor (ComplexTensor or ttnn.Tensor) – the input gradient tensor.
input_tensor_a (ComplexTensor or ttnn.Tensor) – the input tensor.
input_tensor_b (ComplexTensor or ttnn.Tensor or Number) – the input tensor.
- Keyword Arguments:
-
round_mode (str, optional) – Round mode for the operation (when input tensors are not ComplexTensor type). Can be None, “trunc”, “floor”. Defaults to None.
are_required_outputs (List[bool], optional) – List of required outputs. Defaults to [True, True].
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
input_grad (ttnn.Tensor, optional) – Preallocated output tensor for gradient of input_tensor. Defaults to None.
other_grad (ttnn.Tensor, optional) – Preallocated output tensor for gradient of other_tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Supports broadcasting.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
bfloat8_b/bfloat4_b is only supported on TILE_LAYOUT
Performance of the PCC may degrade when using BFLOAT8_B. For more details, refer to the BFLOAT8_B limitations.
Example
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.div_bw(grad_tensor, tensor1, tensor2, round_mode = None)
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> scalar = 2 >>> output = ttnn.div_bw(grad_tensor, tensor, scalar, round_mode = None)