ttnn.softplus
- ttnn.softplus(input_tensor: ttnn.Tensor, *, beta: float | None = 1, threshold: float | None = 20, memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) ttnn.Tensor
-
Applies softplus to
input_tensor
element-wise.\[\mathrm{output\_tensor}_i = softplus(\mathrm{input\_tensor}_i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
beta (float, optional) – Scales the input before applying the Softplus function. By modifying
beta
, you can adjust the steepness of the function. A higherbeta
value makes the function steeper, approaching a hard threshold like the ReLU function for large values ofbeta
. Defaults to 1.threshold (float, optional) – Used to switch to a linear function for large values to improve numerical stability. This avoids issues with floating-point representation for very large values. Defaults to 20.
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.softplus(tensor, beta = 1.0, threshold = 20.0)