ttnn.rdiv
- ttnn.rdiv = Operation(python_fully_qualified_name='ttnn.rdiv', function=<ttnn._ttnn.operations.unary.rdiv_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_rdiv>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Performs the element-wise division of a scalar
value
by a tensorinput
and rounds the result using round_mode.Input tensor must have BFLOAT16 data type.
Output tensor will have BFLOAT16 data type.
- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
value (int) – denominator value which is actually calculated as numerator float value >= 0.
- Keyword Arguments:
-
round_mode (string) – rounding_mode value. Can be None, “trunc”, “floor”. Defaults to None.
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
System memory is not supported.
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> value = 2 >>> output = ttnn.rdiv(tensor, value, round_mode = None)