ttnn.rpow
- ttnn.rpow = Operation(python_fully_qualified_name='ttnn.rpow', function=<ttnn._ttnn.operations.unary.rpow_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_rpow>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Performs rpow function on
input_tensor
,exponent
.- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor. Supported for input range upto 28
exponent (float) – exponent value. Non-positive values are not supported.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
System memory is not supported.
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> exponent = 2 >>> output = ttnn.rpow(tensor, exponent)