ttnn.empty_like
- ttnn.empty_like(reference: ttnn.Tensor, *, dtype: ttnn.DataType | None = ttnn.bfloat16, layout: ttnn.Layout | None = ttnn.ROW_MAJOR, device: ttnn.Device | ttnn.MeshDevice | None = None, memory_config: ttnn.MemoryConfig | None = ttnn.DRAM_MEMORY_CONFIG) ttnn.Tensor
-
Creates a new tensor with the same shape as the given reference, but without initializing its values. The data type, layout, device, and memory configuration of the new tensor can be specified.
- Parameters:
-
reference (ttnn.Tensor) – The reference tensor whose shape will be used for the output tensor.
- Keyword Arguments:
-
dtype (ttnn.DataType, optional) – The desired data type of the output tensor. Defaults to ttnn.bfloat16.
layout (ttnn.Layout, optional) – The desired layout of the output tensor. Defaults to ttnn.ROW_MAJOR.
device (ttnn.Device | ttnn.MeshDevice, optional) – The device where the tensor will be allocated. Defaults to None.
memory_config (ttnn.MemoryConfig, optional) – The memory configuration for the operation. Defaults to ttnn.DRAM_MEMORY_CONFIG.
- Returns:
-
ttnn.Tensor – The output uninitialized tensor with the same shape as the reference tensor.
Example
>>> reference = ttnn.from_torch(torch.randn(2, 3), dtype=ttnn.bfloat16) >>> tensor = ttnn.empty_like(reference, dtype=ttnn.float32) >>> print(tensor) ttnn.Tensor([[[[0.87, 0.45, 0.22], [0.60, 0.75, 0.25]]]], shape=Shape([2, 3]), dtype=DataType::BFLOAT16, layout=Layout::ROW_MAJOR)