ttnn.asinh

ttnn.asinh = FastOperation(python_fully_qualified_name='ttnn.asinh', function=<ttnn._ttnn.operations.unary.asinh_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function register_ttnn_cpp_unary_function.<locals>._golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Performs asinh function on input_tensor.

Args:

input_tensor (ttnn.Tensor): the input tensor.

Keyword Args:

memory_config (ttnn.MemoryConfig, optional): memory configuration for the operation. Defaults to None.

Returns:

ttnn.Tensor: the output tensor.

Note:

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

System memory is not supported.

Example:
>>> tensor = ttnn.from_torch(torch.rand([2, 2], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.asinh(tensor)