ttnn.square
- ttnn.square = FastOperation(python_fully_qualified_name='ttnn.square', function=<ttnn._ttnn.operations.unary.square_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function register_ttnn_cpp_unary_function.<locals>._golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Applies square to
input_tensor
element-wise.\[\mathrm{{output\_tensor}}_i = \verb|square|(\mathrm{{input\_tensor}}_i)\]- Args:
-
input_tensor (ttnn.Tensor): the input tensor.
- Keyword Args:
-
memory_config (ttnn.MemoryConfig, optional): memory configuration for the operation. Defaults to None. output_tensor (ttnn.Tensor, optional): preallocated output tensor. Defaults to None. queue_id (int, optional): command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor: the output tensor.
- Note:
-
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
- Example:
-
>>> tensor = ttnn.from_torch(torch.rand([2, 2], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.square(tensor)