ttnn.rsqrt
- ttnn.rsqrt = FastOperation(python_fully_qualified_name='ttnn.rsqrt', function=<ttnn._ttnn.operations.unary.rsqrt_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function register_ttnn_cpp_unary_function.<locals>._golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Applies rsqrt to
input_tensor
element-wise.\[\mathrm{output\_tensor}_i = rsqrt(\mathrm{input\_tensor}_i)\]- Args:
-
input_tensor (ttnn.Tensor): the input tensor.
- Keyword Args:
-
fast_and_approximate_mode (bool, optional): Use the fast and approximate mode. Defaults to False. memory_config (ttnn.MemoryConfig, optional): Memory configuration for the operation. Defaults to None. output_tensor (ttnn.Tensor, optional): preallocated output tensor. Defaults to None. queue_id (int, optional): command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor: the output tensor.
- Note:
-
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
- Example:
-
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.rsqrt(tensor, fast_and_approximate_mode=True)