ttnn.conv1d
- ttnn.conv1d = Operation(python_fully_qualified_name='ttnn.conv1d', function=<ttnn._ttnn.operations.conv.conv1d_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=None, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
- 
Applies a 1D convolution over an input signal composed of several input planes. Implemented as a 2D Convolution of input height 1 and input width as input_length. - Parameters:
- 
- input_tensor (ttnn.Tensor) – The input tensor. This must be in the format [N, H, W, C]. It can be on host or device. 
- weight_tensor (ttnn.Tensor) – The weight tensor. The weights can be passed in the same format as PyTorch, [out_channels, in_channels, kernel_height, kernel_width]. The op w 
- bias_tensor (ttnn.Tensor, None) – Optional bias tensor. Default: None 
- device (ttnn.MeshDevice) – The device to use. 
- in_channels (int) – Number of input channels. 
- out_channels (int) – Number of output channels. 
- batch_size (int) – Batch size. 
- input_length (int) – Length of the input signal. 
- kernel_size (int) – Size of the convolving kernel. 
- stride (int) – Stride of the cross-correlation. 
- padding (int or tuple[int, int])) – Zero-padding added to both sides of the input. pad_length or [pad_left, pad_right]. 
- dilation (int) – Spacing between kernel elements. 
- groups (int) – Number of blocked connections from input channels to output channels. 
- dtype (ttnn.DataType, None) – The data type of the input tensor. Default: None (will use the same dtype as input_tensor). 
- conv_config (ttnn.Conv2dConfig, None) – Configuration for convolution. Default: None 
- compute_config (ttnn.DeviceComputeKernelConfig, None) – Configuration for compute kernel. Default: None 
- memory_config (ttnn.MemoryConfig, None) – Output Tensor’s Memory Configuration. Default: None 
- return_output_dim (bool) – If true, the op also returns the height and width of the output tensor in [N, H, W, C] format, 
- return_weights_and_bias (bool) – If true, the op also returns the preprocessed weight and bias on device . 
 
- Returns:
- 
The output tensor, output height and width, and the preprocessed weights and bias. 
- Return type:
- 
[ttnn.Tensor]: The output tensor, when return_output_dim = False and return_weights_and_bias = False 
- Return type:
- 
[ttnn.Tensor, int]: The output tensor, and it’s length, if return_output_dim = True 
- Return type:
- 
[ttnn.Tensor, Tuple[ttnn.Tensor, ttnn.Tensor]]: The output tensor, it’s weights and biases, if return_weights_and_bias = True 
- Return type:
- 
[ttnn.Tensor, int, Tuple[ttnn.Tensor, ttnn.Tensor]]: The output tensor,it’s length, it’s weights and biases, if return_output_dim = True and return_weights_and_bias = True