ttnn.fill_rm
- ttnn.fill_rm = Operation(python_fully_qualified_name='ttnn.fill_rm', function=<ttnn._ttnn.operations.data_movement.fill_rm_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=None, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Generates an NCHW row-major tensor and fill it with high values up to hOnes, wOnes in each HW tile with the rest padded with high values. So for H=2, W=3, hFill=1, wFill=2 the following tensor will be generated:
+------------> W | hi hi lo | lo lo lo | v H
H, W are expected to be multiples of 32.
The ‘any’ Tensor arg is only used to pass the device and resulting tensor dtype.
val_hi/lo are expected to be floats.
Argument
Description
Data type
Valid range
Required
N
Batch count of output tensor
int
N > 0
Yes
C
Channel count of output tensor
int
C > 0
Yes
H
Height count of output tensor
int
H > 0
Yes
W
Width count of output tensor
int
W > 0
Yes
hOnes
Height of high values region
int
hOnes <= H
Yes
wOnes
Width of high values region
int
wOnes <= W
Yes
any
Any input tensor with desired device and data types for output tensor
tt_lib.tensor.Tensor
Yes
val_hi
High value to use
float
Yes
val_lo
Low value to use
float
Yes
- Parameters:
-
N (number) – Batch count of output tensor.
C (number) – Channel count of output tensor.
H (number) – Height count of output tensor.
W (number) – Width count of output tensor.
hOnes (number) – Height of high values region.
wOnes (number) – Width of high values region.
any (ttnn.tensor) – Any input tensor with desired device and data types for output tensor. value greater than 0
val_hi (number) – High value to use.
val_lo (number) – Low value to use.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.