ttnn.repeat
- ttnn.repeat(input_tensor: ttnn.Tensor, repetition_vector: SmallVector, *, memory_config: ttnn.MemoryConfig = None) ttnn.Tensor
-
Returns a new tensor filled with repetition of input
input_tensoraccording to number of times specified inshape.- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
repetition_vector (SmallVector) – The number of repetitions for each dimension.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Example
# Create a tensor to repeat input_tensor = torch.tensor([[1, 2], [3, 4]]) input_tensor_tt = ttnn.from_torch(input_tensor, device=device) # Repeat the tensor along specified dimensions repeated_tensor = ttnn.repeat(input_tensor_tt, (1, 2)) print("Repeated Tensor Shape:", repeated_tensor.shape) # Repeated Tensor Shape: Shape([2, 4])