ttnn.add
- ttnn.add = FastOperation(python_fully_qualified_name='ttnn.add', function=<ttnn._ttnn.operations.binary.add_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Adds
input_tensor_a
toinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{{output\_tensor}}_i = \mathrm{{input\_tensor\_a}}_i + \mathrm{{input\_tensor\_b}}_i\]- Args:
-
input_tensor_a (ttnn.Tensor): the input tensor. input_tensor_b (ttnn.Tensor or Number): the input tensor.
- Keyword args:
-
memory_config (ttnn.MemoryConfig, optional): memory configuration for the operation. Defaults to None. dtype (ttnn.DataType, optional): data type for the output tensor. Defaults to None. output_tensor (ttnn.Tensor, optional): preallocated output tensor. Defaults to None. activations (List[str], optional): list of activation functions to apply to the output tensor:
'None'
|'relu'
. Defaults to None. queue_id (int, optional): command queue id. Defaults to 0. - Returns:
-
ttnn.Tensor: the output tensor.
Supports broadcasting.
- Note:
-
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B, INT32
TILE
2, 3, 4
- Example:
-
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.add(tensor1, tensor2/scalar)