ttnn.subalpha_bw
- ttnn.subalpha_bw = FastOperation(python_fully_qualified_name='ttnn.subalpha_bw', function=<ttnn._ttnn.operations.binary_backward.subalpha_bw_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function <lambda>>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Performs backward operations for subalpha of
input_tensor_a
andinput_tensor_b
with givengrad_tensor
.- Args:
-
grad_tensor (ttnn.Tensor): the input gradient tensor. input_tensor_a (ttnn.Tensor): the input tensor. input_tensor_b (ttnn.Tensor): the input tensor. alpha (float): Alpha value. Defaults to 1.
- Keyword args:
-
are_required_outputs (List[bool], optional): List of required outputs. Defaults to [True, True]. memory_config (ttnn.MemoryConfig, optional): Memory configuration for the operation. Defaults to None. input_grad (ttnn.Tensor, optional): Preallocated output tensor for gradient of input_tensor_a. Defaults to None. other_grad (ttnn.Tensor, optional): Preallocated output tensor for gradient of input_tensor_b. Defaults to None. queue_id (int, optional): command queue id. Defaults to 0.
- Note:
-
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
bfloat8_b/bfloat4_b is only supported on TILE_LAYOUT
Example:
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> alpha = 1 >>> output = ttnn.subalpha_bw(grad_tensor, tensor1, tensor2, alpha)