ttnn.maximum
- ttnn.maximum = FastOperation(python_fully_qualified_name='ttnn.maximum', function=<ttnn._ttnn.operations.binary.maximum_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_maximum>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes maximum for
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{output\_tensor} = \verb|maximum|(\mathrm{input\_tensor\_a,input\_tensor\_b})\]- Args:
-
input_tensor_a (ttnn.Tensor): the input tensor. input_tensor_b (ttnn.Tensor or Number): the input tensor.
- Keyword Args:
-
memory_config (ttnn.MemoryConfig, optional): memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor: the output tensor.
- Note:
-
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
- Example:
-
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.maximum(tensor1, tensor2/scalar)