ttnn.logaddexp_bw

ttnn.logaddexp_bw = FastOperation(python_fully_qualified_name='ttnn.logaddexp_bw', function=<ttnn._ttnn.operations.binary_backward.logaddexp_bw_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function <lambda>>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Performs backward operations for logaddexp of input_tensor_a and input_tensor_b with given grad_tensor.

Args:

grad_tensor (ttnn.Tensor): the input gradient tensor. input_tensor_a (ttnn.Tensor): the input tensor. input_tensor_b (ttnn.Tensor): the input tensor.

Keyword args:

memory_config (ttnn.MemoryConfig, optional): Memory configuration for the operation. Defaults to None.

Returns:

List of ttnn.Tensor: the output tensor.

Note:

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

bfloat8_b/bfloat4_b is only supported on TILE_LAYOUT

Example:
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.logaddexp_bw(grad_tensor, tensor1, tensor2)