ttnn.argmax
- ttnn.argmax = Operation(python_fully_qualified_name='ttnn.argmax', function=<ttnn._ttnn.operations.reduction.argmax_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _create_golden_function.<locals>.golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Returns the indices of the maximum value of elements in the
input_tensor
. If nodim
is provided, it will return the indices of maximum value of all elements in giveninput_tensor
.- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
dim (int, optional) – dimension to reduce. Defaults to None.
keepdim (bool, optional) – whether to keep the reduced dimension. Defaults to False.
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – Preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – Output tensor containing the indices of the maximum value.
Note
The input tensor supports the following data types and layouts:
Input Tensor dtype - layout
FLOAT32 - ROW_MAJOR
BFLOAT16 - ROW_MAJOR
UINT32 - ROW_MAJOR
INT32 - ROW_MAJOR
UINT16 - ROW_MAJOR
The output tensor will be of the following data type and layout:
Output Tensor dtype - layout
UINT32 - ROW_MAJOR
- Limitations:
-
Currently this op only supports dimension-specific reduction on the last dimension (i.e.
dim
= -1).
Example
input_tensor = ttnn.rand([1, 1, 32, 64], device=device, layout=ttnn.ROW_MAJOR_LAYOUT)
# Last dim reduction yields shape of [1, 1, 32, 1] output_onedim = ttnn.argmax(input_tensor, dim=-1, keepdim=True)
# All dim reduction yields shape of [] output_alldim = ttnn.argmax(input_tensor)