ttnn.topk
- ttnn.topk(input_tensor: ttnn.Tensor, k: number, dim: number, largest: bool = False, sorted: bool = False, *, memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) List of ttnn.Tensor
-
Returns the
k
largest ork
smallest elements of the given input tensor along a given dimension.If
dim
is not provided, the last dimension of the input tensor is used.If
largest
is True, the k largest elements are returned. Otherwise, the k smallest elements are returned.The boolean option
sorted
if True, will make sure that the returned k elements are sorted.Input tensor must have BFLOAT8 or BFLOAT16 data type and TILE_LAYOUT layout.
Output value tensor will have the same data type as input tensor and output index tensor will have UINT16 data type.
Equivalent pytorch code:
return torch.topk(input_tensor, k, dim=dim, largest=largest, sorted=sorted, *, out=None)
- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
k (number) – the number of top elements to look for.
dim (number) – the dimension to reduce.
largest (bool) – whether to return the largest or the smallest elements. Defaults to False.
sorted (bool) – whether to return the elements in sorted order. Defaults to False.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – Preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
List of ttnn.Tensor – the output tensor.