ttnn.where
- ttnn.where = Operation(python_fully_qualified_name='ttnn.where', function=<ttnn._ttnn.operations.ternary.where_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_where>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes Where on
input_tensor_a
,input_tensor_b
andinput_tensor_c
and returns the tensor with the same layout asinput_tensor_a
- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor or Number) – the input tensor.
input_tensor_c (ttnn.Tensor or Number) – the input tensor.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
bfloat8_b/bfloat4_b supports only on TILE_LAYOUT
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 0], [1, 0]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.where(tensor1, tensor2, tensor3)