ttnn.where

ttnn.where = Operation(python_fully_qualified_name='ttnn.where', function=<ttnn._ttnn.operations.ternary.where_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_where>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Computes Where on input_tensor_a, input_tensor_b and input_tensor_c and returns the tensor with the same layout as input_tensor_a

Parameters:
  • input_tensor_a (ttnn.Tensor) – the input tensor.

  • input_tensor_b (ttnn.Tensor or Number) – the input tensor.

  • input_tensor_c (ttnn.Tensor or Number) – the input tensor.

Keyword Arguments:
  • memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

  • output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.

  • queue_id (int, optional) – command queue id. Defaults to 0.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16, BFLOAT8_B

TILE

2, 3, 4

bfloat8_b/bfloat4_b supports only on TILE_LAYOUT

Example

>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 0], [1, 0]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor3 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.where(tensor1, tensor2, tensor3)