ttnn.experimental.cumsum
- ttnn.experimental.cumsum = Operation(python_fully_qualified_name='ttnn.experimental.cumsum', function=<ttnn._ttnn.operations.experimental.cumsum_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=None, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Returns cumulative sum of input along dimension dim For a given input of size N, the output will also contain N elements and be such that: This function is fundamentally identical to torch.cumsum()
- Parameters:
-
input (ttnn.Tensor) – input tensor
dim (int) – dimension along which to compute cumulative sum
- Keyword Arguments:
-
dtype (ttnn.DataType, optional) – desired output type. If specified then input tensor will be casted to dtype before processing.
output (ttnn.Tensor, optional) – preallocated output. If specified, output must have same shape as input, and must be on the same device.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
If both dtype and output are specified then output.dtype must be dtype)
Supported dtypes, layout, ranks and dim values:
Dtypes
Layouts
Ranks
dim
BFLOAT16, FLOAT32
TILE
1, 2, 3, 4, 5
-rank <= dim < rank
INT32, UINT32
TILE
3, 4, 5
dim in {0, 1, …, rank - 3} or dim in {-rank, -rank + 1, …, -3}
Example:
import torch import ttnn # Create tensor torch_input = torch.rand([2, 3, 4]) tensor_input = ttnn.from_torch(torch_input, device=device) # Apply ttnn.experimental.cumsum() on dim=0 tensor_output = ttnn.experimental.cumsum(tensor_input, dim=0) # With preallocated output and dtype preallocated_output = ttnn.from_torch(torch.rand([2, 3, 4]), dtype=ttnn.bfloat16, device=device) tensor_output = ttnn.experimental.cumsum(tensor_input, dim=0, dtype=torch.bfloat16, output=preallocated_output)