ttir-builder
ttir-builder
is a tool for creating TTIR operations. It provides support for MLIR modules to be generated from user-constructed ops, lowered into TTNN or TTMetal backends, and finally translated into executable flatbuffers. Or you can do all three at once!
Getting started and building
Build ttmlir.
TTIRBuilder
is a builder class providing the API for creating TTIR ops. The package ttir_builder
contains everything needed to create ops for a TTIRBuilder object. ttir_builder.utils
contains the APIs for wrapping op-creating-functions into MLIR modules and flatbuffers files.
from ttir_builder import TTIRBuilder, Operand, Shape
from ttir_builder.utils import compile_to_flatbuffer
For the full set of supported ops, see tools/ttir-builder/builder.py
.
For more detailed information on available APIs, see tools/ttir-builder/builder.py
and tools/ttir-builder/utils.py
.
Creating a TTIR module
build_mlir_module
defines an MLIR module specified as a python function. It wraps test_fn
in a MLIR FuncOp then wraps that in an MLIR module, and finally ties arguments of that FuncOp to test function inputs. It will instantiate and pass a TTIRBuilder
object as the last argument of test_fn
.
def build_mlir_module(
test_fn: Callable,
inputs_shapes: List[Shape],
inputs_types: Optional[List[Union[torch.dtype, TypeInfo]]] = None,
mesh_shape: Optional[Tuple[int, int]] = None,
module_dump: bool = False,
base: Optional[str] = None,
output_root: str = ".",
)
Example
from ttir_builder.utils import build_mlir_module
from ttir_builder import Operand, TTIRBuilder
shapes = [(32, 32), (32, 32), (32, 32)]
def model(in0: Operand, in1: Operand, in2: Operand, builder: TTIRBuilder):
add_0 = builder.add(in0, in1)
multiply_1 = builder.multiply(in1, add_0)
return builder.multiply(multiply_1, in2)
module, builder = build_mlir_module(model, shapes)
Returns
An MLIR module containing an MLIR op graph defined by test_fn
and the TTIRBuilder
object used to create it
module {
func.func @model(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<32x32xf32>) -> tensor<32x32xf32> {
%0 = ttir.empty() : tensor<32x32xf32>
%1 = "ttir.add"(%arg0, %arg1, %0) : (tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>) -> tensor<32x32xf32>
%2 = ttir.empty() : tensor<32x32xf32>
%3 = "ttir.multiply"(%arg1, %1, %2) : (tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>) -> tensor<32x32xf32>
%4 = ttir.empty() : tensor<32x32xf32>
%5 = "ttir.multiply"(%3, %arg2, %4) : (tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>) -> tensor<32x32xf32>
return %5 : tensor<32x32xf32>
}
}
Running a pipeline
run_pipeline
runs a pass on the TTIR module to lower it into a backend, using pipeline_fn
. You can pass pipeline_fn
in as one of the following: ttir_to_ttnn_backend_pipeline
, ttir_to_ttmetal_backend_pipeline
(both found in ttmlir.passes
), or a custom pipeline built with create_custom_pipeline_fn
. The default if none is provided is the TTNN pipeline.
def run_pipeline(
module,
pipeline_fn: Callable = ttir_to_ttnn_backend_pipeline,
pipeline_options: List[str] = None,
dump_to_file: bool = True,
output_file_name: str = "test.mlir",
system_desc_path: Optional[str] = None,
mesh_shape: Optional[Tuple[int, int]] = None,
argument_types_string: Optional[str] = None,
)
TTNN example
Let's expand on our previous example
from ttir_builder.utils import build_mlir_module, run_pipeline
from ttir_builder import Operand, TTIRBuilder
from ttmlir.passes import ttir_to_ttnn_backend_pipeline
shapes = [(32, 32), (32, 32), (32, 32)]
def model(in0: Operand, in1: Operand, in2: Operand, builder: TTIRBuilder):
add_0 = builder.add(in0, in1)
multiply_1 = builder.multiply(in1, add_0)
return builder.multiply(multiply_1, in2)
module, builder = build_mlir_module(model, shapes)
ttnn_module = run_pipeline(module, ttir_to_ttnn_backend_pipeline)
Returns
An MLIR module lowered into TTNN
#dram = #ttnn.buffer_type<dram>
#system_desc = #tt.system_desc<[{role = host, target_triple = "x86_64-pc-linux"}], [{arch = <wormhole_b0>, grid = 8x8, coord_translation_offsets = 18x18, l1_size = 1499136, num_dram_channels = 12, dram_channel_size = 1073741824, noc_l1_address_align_bytes = 16, pcie_address_align_bytes = 32, noc_dram_address_align_bytes = 32, l1_unreserved_base = 97248, erisc_l1_unreserved_base = 69632, dram_unreserved_base = 32, dram_unreserved_end = 1073158336, physical_helper_cores = {dram = [ 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0x10, 0x11] eth_inactive = [ 16x18, 16x19, 16x20, 16x21, 16x22, 16x23, 16x24, 16x25, 17x19, 17x20, 17x22, 17x23, 17x24]}, supported_data_types = [<f32>, <f16>, <bf16>, <bfp_f8>, <bfp_bf8>, <bfp_f4>, <bfp_bf4>, <bfp_f2>, <bfp_bf2>, <u32>, <u16>, <u8>, <si32>], supported_tile_sizes = [ 4x16, 16x16, 32x16, 4x32, 16x32, 32x32], num_cbs = 32, num_compute_threads = 1, num_datamovement_threads = 2}], [0], [3 : i32], [ 0x0x0x0]>
#ttnn_layout = #ttnn.ttnn_layout<(d0, d1) -> (d0, d1), <1x1>, memref<1x1x!tt.tile<32x32, f32>, #dram>, <interleaved>>
module {
tt.device_module {
builtin.module attributes {tt.system_desc = #system_desc} {
tt.device @default_device = <workerGrid = #tt.grid<8x8, (d0, d1) -> (0, d0, d1)>, l1Map = (d0, d1, d2)[s0] -> (0, d0, d1, d2 + s0), dramMap = (d0, d1, d2)[s0, s1, s2, s3, s4, s5] -> (0, 0, (((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) floordiv s4) mod 12, ((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) floordiv (s4 * 12) + ((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) mod s4 + s5), meshShape = , chipIds = [0]>
func.func @model(%arg0: tensor<32x32xf32, #ttnn_layout>, %arg1: tensor<32x32xf32, #ttnn_layout>, %arg2: tensor<32x32xf32, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout> {
%0 = "ttnn.abs"(%arg0) : (tensor<32x32xf32, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout>
"ttnn.deallocate"(%arg0) <{force = false}> : (tensor<32x32xf32, #ttnn_layout>) -> ()
%1 = "ttnn.multiply"(%arg1, %0) : (tensor<32x32xf32, #ttnn_layout>, tensor<32x32xf32, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout>
"ttnn.deallocate"(%0) <{force = false}> : (tensor<32x32xf32, #ttnn_layout>) -> ()
"ttnn.deallocate"(%arg1) <{force = false}> : (tensor<32x32xf32, #ttnn_layout>) -> ()
%2 = "ttnn.multiply"(%1, %arg2) : (tensor<32x32xf32, #ttnn_layout>, tensor<32x32xf32, #ttnn_layout>) -> tensor<32x32xf32, #ttnn_layout>
"ttnn.deallocate"(%1) <{force = false}> : (tensor<32x32xf32, #ttnn_layout>) -> ()
"ttnn.deallocate"(%arg2) <{force = false}> : (tensor<32x32xf32, #ttnn_layout>) -> ()
return %2 : tensor<32x32xf32, #ttnn_layout>
}
}
}
}
TTMetal example
Let's use the same code for TTMetal that was used in the TTNN example but change the pipeline_fn
to ttir_to_ttmetal_backend_pipeline
. Only one or the other can be run on a module since run_pipeline
modifies the module in place. Note that while all TTIR ops supported by builder can be lowered to TTNN, not all can be lowered to TTMetal yet. Adding documentation to specify what ops can be lowered to TTMetal is in the works.
from ttmlir.passes import ttir_to_ttmetal_backend_pipeline
ttmetal_module = run_pipeline(module, ttir_to_ttmetal_backend_pipeline)
Returns
An MLIR module lowered into TTMetal
#l1 = #tt.memory_space<l1>
#system_desc = #tt.system_desc<[{role = host, target_triple = "x86_64-pc-linux-gnu"}], [{arch = <wormhole_b0>, grid = 8x8, coord_translation_offsets = 18x18, l1_size = 1499136, num_dram_channels = 12, dram_channel_size = 1073741824, noc_l1_address_align_bytes = 16, pcie_address_align_bytes = 32, noc_dram_address_align_bytes = 32, l1_unreserved_base = 1024, erisc_l1_unreserved_base = 1024, dram_unreserved_base = 1024, dram_unreserved_end = 1073741824, physical_helper_cores = {dram = [ 8x0, 9x0, 10x0, 8x1, 9x1, 10x1, 8x2, 9x2, 10x2, 8x3, 9x3, 10x3]}, supported_data_types = [<f32>, <f16>, <bf16>, <bfp_f8>, <bfp_bf8>, <bfp_f4>, <bfp_bf4>, <bfp_f2>, <bfp_bf2>, <u32>, <u16>, <u8>, <si32>], supported_tile_sizes = [ 4x16, 16x16, 32x16, 4x32, 16x32, 32x32], num_cbs = 32, num_compute_threads = 1, num_datamovement_threads = 2}], [0], [3 : i32], [ 0x0x0x0]>
module {
tt.device_module {
builtin.module attributes {tt.system_desc = #system_desc} {
tt.device @default_device = <workerGrid = #tt.grid<8x8, (d0, d1) -> (0, d0, d1)>, l1Map = (d0, d1, d2)[s0] -> (0, d0, d1, d2 + s0), dramMap = (d0, d1, d2)[s0, s1, s2, s3, s4, s5] -> (0, 0, (((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) floordiv s4) mod 12, ((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) floordiv (s4 * 12) + ((d0 * s1) * (s2 * s3) + d1 * (s2 * s3) + d2) mod s4 + s5), meshShape = , chipIds = [0]>
func.func @model(%arg0: memref<32x32xf32>, %arg1: memref<32x32xf32>, %arg2: memref<32x32xf32>) -> memref<32x32xf32> {
%0 = "ttmetal.create_buffer"() <{address = 9216 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
%1 = "ttmetal.create_buffer"() <{address = 1024 : i64}> : () -> memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>
"ttmetal.enqueue_write_buffer"(%arg0, %1) : (memref<32x32xf32>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
"ttmetal.enqueue_program"(%1, %0, %1, %0) <{cb_ports = array<i64: 0, 1>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel0, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, noc0>, #ttmetal.compute_config<@compute_kernel1, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 2, 2>}> : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%1) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
%2 = "ttmetal.create_buffer"() <{address = 1024 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
%3 = "ttmetal.create_buffer"() <{address = 5120 : i64}> : () -> memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>
"ttmetal.enqueue_write_buffer"(%arg1, %3) : (memref<32x32xf32>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
"ttmetal.enqueue_program"(%3, %2, %3, %2) <{cb_ports = array<i64: 0, 1>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel2, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, noc0>, #ttmetal.compute_config<@compute_kernel3, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 2, 2>}> : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%3) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
%4 = "ttmetal.create_buffer"() <{address = 13312 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
"ttmetal.enqueue_program"(%0, %2, %4, %0, %2, %4) <{cb_ports = array<i64: 0, 1, 2>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel4, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc0>, #ttmetal.noc_config<@datamovement_kernel5, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc1>, #ttmetal.compute_config<@compute_kernel6, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 3, 3>}> : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%0) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%2) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
%5 = "ttmetal.create_buffer"() <{address = 1024 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
%6 = "ttmetal.create_buffer"() <{address = 5120 : i64}> : () -> memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>
"ttmetal.enqueue_write_buffer"(%arg1, %6) : (memref<32x32xf32>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
"ttmetal.enqueue_program"(%6, %5, %6, %5) <{cb_ports = array<i64: 0, 1>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel7, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, noc0>, #ttmetal.compute_config<@compute_kernel8, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 2, 2>}> : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%6) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
%7 = "ttmetal.create_buffer"() <{address = 17408 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
"ttmetal.enqueue_program"(%5, %4, %7, %5, %4, %7) <{cb_ports = array<i64: 0, 1, 2>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel9, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc0>, #ttmetal.noc_config<@datamovement_kernel10, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc1>, #ttmetal.compute_config<@compute_kernel11, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 3, 3>}> : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%5) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%4) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
%8 = "ttmetal.create_buffer"() <{address = 9216 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
%9 = "ttmetal.create_buffer"() <{address = 1024 : i64}> : () -> memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>
"ttmetal.enqueue_write_buffer"(%arg2, %9) : (memref<32x32xf32>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
"ttmetal.enqueue_program"(%9, %8, %9, %8) <{cb_ports = array<i64: 0, 1>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel12, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, noc0>, #ttmetal.compute_config<@compute_kernel13, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 2, 2>}> : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%9) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
%10 = "ttmetal.create_buffer"() <{address = 5120 : i64}> : () -> memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>
"ttmetal.enqueue_program"(%7, %8, %10, %7, %8, %10) <{cb_ports = array<i64: 0, 1, 2>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel14, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc0>, #ttmetal.noc_config<@datamovement_kernel15, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, noc1>, #ttmetal.compute_config<@compute_kernel16, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>, <cb_port[2]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 3, 3>}> : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%8) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%7) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
%alloc = memref.alloc() : memref<32x32xf32>
%11 = "ttmetal.create_buffer"() <{address = 1024 : i64}> : () -> memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>
"ttmetal.enqueue_program"(%10, %11, %10, %11) <{cb_ports = array<i64: 0, 1>, kernelConfigs = [#ttmetal.noc_config<@datamovement_kernel17, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, noc0>, #ttmetal.compute_config<@compute_kernel18, #ttmetal.core_range<0x0, 1x1>, #ttmetal.kernel_args< ct_args = [<cb_port[0]>, <cb_port[1]>]>, hifi4, false, false, [default]>], operandSegmentSizes = array<i32: 2, 2>}> : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>, memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
"ttmetal.deallocate_buffer"(%10) : (memref<1x1x1x1x!tt.tile<32x32, f32>, #tt.shard<4096x4096>, #l1>) -> ()
"ttmetal.enqueue_read_buffer"(%11, %alloc) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>, memref<32x32xf32>) -> ()
"ttmetal.finish"() : () -> ()
"ttmetal.deallocate_buffer"(%11) : (memref<1x1x32x32xf32, #tt.shard<128x4>, #l1>) -> ()
return %alloc : memref<32x32xf32>
}
func.func private @datamovement_kernel0() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel1() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%2 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "tilize_init"(%1, %0, %2) : (!emitc.opaque<"::tt::CB">, i32, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "experimental::tilize_block"(%1, %2, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, i32, i32) -> ()
emitc.call_opaque "cb_push_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel2() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel3() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%2 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "tilize_init"(%1, %0, %2) : (!emitc.opaque<"::tt::CB">, i32, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "experimental::tilize_block"(%1, %2, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, i32, i32) -> ()
emitc.call_opaque "cb_push_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel4() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel5() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel6() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 0 : index}> : () -> !emitc.size_t
%1 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
emitc.call_opaque "tile_regs_acquire"() : () -> ()
%2 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%3 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
%4 = emitc.literal "get_compile_time_arg_val(2)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "binary_op_init_common"(%2, %3, %4) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "add_tiles_init"(%2, %3) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "add_tiles"(%2, %3, %0, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.size_t, !emitc.size_t, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_commit"() : () -> ()
emitc.call_opaque "tile_regs_wait"() : () -> ()
emitc.call_opaque "pack_tile"(%0, %4, %0) {template_args = [true]} : (!emitc.size_t, !emitc.opaque<"::tt::CB">, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_release"() : () -> ()
emitc.call_opaque "cb_push_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel7() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel8() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%2 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "tilize_init"(%1, %0, %2) : (!emitc.opaque<"::tt::CB">, i32, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "experimental::tilize_block"(%1, %2, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, i32, i32) -> ()
emitc.call_opaque "cb_push_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel9() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel10() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel11() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 0 : index}> : () -> !emitc.size_t
%1 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
emitc.call_opaque "tile_regs_acquire"() : () -> ()
%2 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%3 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
%4 = emitc.literal "get_compile_time_arg_val(2)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "binary_op_init_common"(%2, %3, %4) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "mul_tiles_init"(%2, %3) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "mul_tiles"(%2, %3, %0, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.size_t, !emitc.size_t, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_commit"() : () -> ()
emitc.call_opaque "tile_regs_wait"() : () -> ()
emitc.call_opaque "pack_tile"(%0, %4, %0) {template_args = [true]} : (!emitc.size_t, !emitc.opaque<"::tt::CB">, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_release"() : () -> ()
emitc.call_opaque "cb_push_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel12() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel13() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%2 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "tilize_init"(%1, %0, %2) : (!emitc.opaque<"::tt::CB">, i32, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "experimental::tilize_block"(%1, %2, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, i32, i32) -> ()
emitc.call_opaque "cb_push_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel14() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel15() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel16() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>, <arg_type = cb_port, operand_index = 2>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 0 : index}> : () -> !emitc.size_t
%1 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
emitc.call_opaque "tile_regs_acquire"() : () -> ()
%2 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%3 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
%4 = emitc.literal "get_compile_time_arg_val(2)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "binary_op_init_common"(%2, %3, %4) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "mul_tiles_init"(%2, %3) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "mul_tiles"(%2, %3, %0, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, !emitc.size_t, !emitc.size_t, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_commit"() : () -> ()
emitc.call_opaque "tile_regs_wait"() : () -> ()
emitc.call_opaque "pack_tile"(%0, %4, %0) {template_args = [true]} : (!emitc.size_t, !emitc.opaque<"::tt::CB">, !emitc.size_t) -> ()
emitc.call_opaque "tile_regs_release"() : () -> ()
emitc.call_opaque "cb_push_back"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%3, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%4, %1) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @datamovement_kernel17() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<noc>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_push_back"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
func.func private @compute_kernel18() attributes {ttkernel.arg_spec = #ttkernel.arg_spec< ct_args = [<arg_type = cb_port, operand_index = 0>, <arg_type = cb_port, operand_index = 1>]>, ttkernel.thread = #ttkernel.thread<compute>} {
%0 = "emitc.constant"() <{value = 1 : i32}> : () -> i32
%1 = emitc.literal "get_compile_time_arg_val(0)" : !emitc.opaque<"::tt::CB">
%2 = emitc.literal "get_compile_time_arg_val(1)" : !emitc.opaque<"::tt::CB">
emitc.call_opaque "cb_reserve_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "untilize_init"(%1, %2) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">) -> ()
emitc.call_opaque "experimental::untilize_block"(%1, %2, %0, %0) : (!emitc.opaque<"::tt::CB">, !emitc.opaque<"::tt::CB">, i32, i32) -> ()
emitc.call_opaque "cb_push_back"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_wait_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%1, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
emitc.call_opaque "cb_pop_front"(%2, %0) : (!emitc.opaque<"::tt::CB">, i32) -> ()
return
}
}
}
}
Compiling into flatbuffer
compile_to_flatbuffer
compiles a TTIRBuilder function fn
straight to flatbuffer. This decorator is mainly a wrapper around the following functions, with each next function called on the output of the last: build_mlir_module
, run_pipeline
, and ttnn_to_flatbuffer_file
or ttmetal_to_flatbuffer_file
as dictated by the target
parameter.
def compile_to_flatbuffer(
fn: Callable,
inputs_shapes: List[Shape],
inputs_types: Optional[List[Union[torch.dtype, TypeInfo]]] = None,
system_desc_path: str = "ttrt-artifacts/system_desc.ttsys",
test_base: str = "test",
output_root: str = ".",
target: Literal["ttnn", "ttmetal"] = "ttnn",
mesh_shape: Optional[Tuple[int, int]] = None,
module_dump: bool = True,
argument_types_string: Optional[str] = None,
custom_pipeline: Union[Callable, str] = None,
pipeline_options: List[str] = None,
)
No flatbuffer is printed or returned. It's only written to a file because it is created as an unsupported text encoding.
TTNN example
Let's use our previous model function.
from ttir_builder.utils import compile_to_flatbuffer
from ttir_builder import Operand, TTIRBuilder
shapes = [(32, 32), (32, 32), (32, 32)]
def model(in0: Operand, in1: Operand, in2: Operand, builder: TTIRBuilder):
add_0 = builder.add(in0, in1)
multiply_1 = builder.multiply(in1, add_0)
return builder.multiply(multiply_1, in2)
compile_to_flatbuffer(
model,
shapes,
target="ttnn",
)
TTMetal example
Let's once again use the same code for TTMetal that was used in the TTNN example but change the target
to "ttmetal"
. Just as with run_pipeline
, only one or the other can be run on a module since compile_to_flatbuffer
modifies the module in place.
compile_to_flatbuffer(
model,
shapes,
target="ttmetal",
)
Integrating with other tools
Alternatives for file creation
- The
ttmlir-opt
tool runs a compiler pass on an.mlir
file. - The
ttmlir-translate
can generate a flatbuffer from an.mlir
file. llvm-lit
can also be used to generate a flatbuffer from an existing.mlir
file.
Running models
ttrt
ttrt
is intended to be a swiss army knife for working with flatbuffers.
tt-explorer
tt-explorer
is a visualizer tool for ttmlir
-powered compiler results.
ttnn-standalone
ttnn-standalone
is a post-compile tuning/debugging tool.
llvm-lit
llvm-lit
can also be used for MLIR testing.
Golden mode
Golden dataclass
TTIRBuilder
provides support to code golden tensors into flatbuffers which will be used for comparison with TT device output in ttrt
runtime. Golden
is the dataclass used to store information about a golden tensor. Each TTIR op should have a matching PyTorch op (or golden function built from PyTorch ops) which should perform exactly the same operation, generating the same outputs given the same inputs. You can use TTIRBuilder
helper functions to store input, intermediate, and output tensors within the flatbuffer. Input and output goldens are mapped with keys "input_" and "output_" followed by a tensor index: input_0
. Intermediate output tensors
GoldenCheckLevel Enum
TTIRBuilder
stores an instance of the class GoldenCheckLevel(Enum)
that dictates golden handling. It defaults to GoldenCheckLevel.OP_LEVEL
. The exception is that TTIRBuilder
CCL ops force the golden level to be set to GRAPH_LEVEL
.
DISABLED : do not store goldens
OP_LEVEL : check every single op level goldens
GRAPH_LEVEL : check graph level goldens only
Check and set GoldenCheckLevel
with TTIRBuilder
APIs.
from ttir_builder import TTIRBuilder, Operand, GoldenCheckLevel
def model(in0: Operand, in1: Operand, in2: Operand, builder: TTIRBuilder):
add_0 = builder.add(in0, in1)
multiply_1 = builder.multiply(in1, add_0)
builder.golden_check_level = GoldenCheckLevel.GRAPH_LEVEL
return builder.multiply(multiply_1, in2)
Getting golden data
Unless otherwise specified in the GoldenCheckLevel
, all input and output tensors will generate and store a golden in TTIRBuilder
as a Golden
type. The TTIRBuilder
class has an API to print stored goldens if you want access to the data they contain: print_goldens(self)
.
Golden tensor:
tensor([[ 4.0450e+00, 1.4274e+00, 5.9156e-01, ..., -5.9834e-01,
-1.1830e-01, 1.2837e-01],
[ 2.3788e+00, 2.9242e-03, -5.2838e-02, ..., 1.8294e+00,
5.0348e+00, 9.7179e-01],
[ 1.5168e-02, 1.0577e-01, -3.0682e-01, ..., 6.7212e-01,
9.4523e-02, 5.3765e+00],
...,
[ 1.4241e-01, 1.1838e+00, -1.0601e+00, ..., 4.9099e-01,
4.2267e+00, 4.0610e-01],
[ 5.6630e-01, -1.3068e-01, -1.7771e-01, ..., 2.3862e+00,
3.9376e-01, 7.3140e-01],
[ 4.2420e+00, 1.7006e-01, -3.4861e-01, ..., 1.1471e-01,
1.6189e+00, -6.9106e-01]])
The TTIRBuilder
API get_golden_map(self)
is used to export golden data for flatbuffer construction. It returns a dictionary of golden tensor names and GoldenTensor
objects. Printing that map will look something like this:
{'input_0': <ttmlir._mlir_libs._ttmlir.passes.GoldenTensor object at 0x7f77c70fa0d0>, 'input_1': <ttmlir._mlir_libs._ttmlir.passes.GoldenTensor object at 0x7f77c70fa160>, 'input_2': <ttmlir._mlir_libs._ttmlir.passes.GoldenTensor object at 0x7f77c6fc9500>, 'output_0': <ttmlir._mlir_libs._ttmlir.passes.GoldenTensor object at 0x7f77c6fc9590>}
To get info from a GoldenTensor
object, use the attributes supported by ttmlir.passes
: name
, shape
, strides
, dtype
, data
.
from ttmlir.passes import GoldenTensor
Setting golden data
Use TTIRBuilder
API set_graph_input_output
to set your own input and output golden tensors using PyTorch tensors.
set_graph_input_output(
self,
inputs: List[torch.Tensor],
outputs: Optional[List[torch.Tensor]] = None,
override: bool = False,
)
import torch
input_0 = torch.ones((32, 32))
output_0 = torch.zeros((32, 32))
builder.set_graph_input_output([input_0], [output_0], True)
Running flatbuffer with golden data in ttrt
Running flatbuffers in ttrt
requires additional building and setting up the environment. Run these commands before creating MLIR modules or flatbuffers so the system description in the flatbuffers match your device.
cmake --build build -- ttrt
ttrt query --save-artifacts
export SYSTEM_DESC_PATH=$(pwd)/ttrt-artifacts/system_desc.ttsys
Set environment variable TTRT_LOGGER_LEVEL
to DEBUG
so ttrt logs golden comparison results and prints graph level golden tensors.
export TTRT_LOGGER_LEVEL=DEBUG
Finally run ttrt. Our example flatbuffer file (since we didn't specify otherwise) defaulted to file path ./ttnn/test_ttnn.mlir.ttnn
. --log-file ttrt.log
and --save-golden-tensors
are both optional flags. They ensure that all golden data produced by the ttrt run gets written to files.
ttrt run ttnn/test_ttnn.mlir --log-file ttrt.log --save-golden-tensors
Golden callbacks
The ttrt
documentation contains a section on the callback function feature. Callback functions run between each op execution during runtime and contain op level golden analysis. They are also customizable and provide the flexibility for you to get creative with you golden usage.
Adding a new op to ttir-builder
ttir-builder
is designed to only create ops supported in TTIR. At the moment, most but not all ops are supported, and new ops are still occasionally added to TTIR. Creating ttir-builder
support for an op entails writing a function in tools/ttir-builder/builder.py
that will create the op and its golden counterpart.
TTIR op factories
All ops are created when their relevant information is run through the op_proxy
function which provides a general interface for proxy-ing and creating ops.
def op_proxy(
self,
op_golden_function: Callable,
op_ttir_function: Callable,
inputs: List[Operand],
unit_attrs: List[str] = None,
organize_ttir_args: Optional[Callable] = None,
organize_golden_args: Optional[Callable] = None,
output_shape: Optional[Shape] = None,
output_type: Optional[Type] = None,
output_create_fn: Optional[Callable] = None,
golden_kwargs: dict = {},
ttir_kwargs: dict = {},
)
Eltwise ops require less specialized handling and call op_proxy
through eltwise_proxy
.
def eltwise_proxy(
self,
op_golden_function: Callable,
op_ttir_function: Callable,
inputs: List[Operand],
unit_attrs: List[str] = None,
)
CCL ops require GoldenCheckLevel
to be set to GRAPH_LEVEL
and integrate that into their own proxy function.
def ccl_proxy(
self,
op_golden_function: Callable,
op_ttir_function: Callable,
inputs: List[Operand],
kwargs: dict = {},
)
Golden functions
Setting the various inputs, outputs, arguments, shapes, and types are all fairly straightforward. Find the TTIR op in include/ttmlir/Dialect/TTIR/IR/TTIROps.td
and replicate the pertinents. If there is necessary information that is not included, you may have to take it upon yourself to do some detective work and trial and error. The tricky part can be the finding or writing a golden function. It must perform exactly the same operation as the TTIR op and be written using PyTorch operations.