ttrt

This tool is intended to be a swiss army knife for working with flatbuffers generated by the compiler. Its primary role is to inspect and run flatbuffer files. It enables the running of flatbuffer files without a front-end runtime.

Building

source env/activate
cmake --build build -- ttrt
ttrt --help

Building runtime mode

Add the following flags when building the compiler

-DTTMLIR_ENABLE_RUNTIME=ON

Building perf mode

Add the following flags when building the compiler

-DTTMLIR_ENABLE_RUNTIME=ON
-DTT_RUNTIME_ENABLE_PERF_TRACE=ON

LOGGER Levels

ttrt support logging at different logger levels. You will need to set env var TTRT_LOGGER_LEVEL. By default, it will print all log messages.

TTRT_LOGGER_LEVEL=INFO
TTRT_LOGGER_LEVEL=CRITICAL
TTRT_LOGGER_LEVEL=ERROR
TTRT_LOGGER_LEVEL=WARNING
TTRT_LOGGER_LEVEL=DEBUG

Installing ttrt as python whls

Everytime you build ttrt, it will create a whls file in build/runtime/tools/python/build. Ex filename ttrt-0.0.235-cp310-cp310-linux_x86_64.whl. You can take this whls file and install it in any docker container and in any venv outside of ttmlir. After which, you can use all the following functionality as the same.

  1. Download whls
  2. Create a python venv
python -m venv ttrt_env
source ttrt_env/bin/activate
  1. Install whls (replace with your version of the whls)
pip install ttrt-0.0.235-cp310-cp310-linux_x86_64.whl

Generate a flatbuffer file from compiler

The compiler supports a pass to load a system descriptor to compile against. You can feed this pass into ttmlir-opt.

  1. Build ttmlir
  2. Build ttrt (see building section on this page)
  3. Generate ttsys file from the system you want to compile for using ttrt. This will create a system_desc.ttsys file under ttrt-artifacts folder.
ttrt query --save-artifacts
  1. Use ttmlir-opt tool in compiler to feed system descriptor. See the ttmlir-opt documentation for more information on how to generate .mlir files.
./build/bin/ttmlir-opt --ttir-load-system-desc="path=/path/to/system_desc.ttsys" --ttir-to-ttnn-backend-pipeline test/ttmlir/Dialect/TTNN/simple_subtract.mlir -o ttnn.mlir
or (pipe path directly into ttir-to-ttnn-backend-pipeline)
./build/bin/ttmlir-opt --ttir-to-ttnn-backend-pipeline="system-desc-path=/path/to/system_desc.ttsys" test/ttmlir/Dialect/TTNN/simple_subtract.mlir -o ttnn.mlir
  1. Use ttmlir-translate tool in compiler to generate the flatbuffer executable. See the ttmlir-translate documentation for more information on how to generate flatbuffer files.
./build/bin/ttmlir-translate --ttnn-to-flatbuffer ttnn.mlir -o out.ttnn
  1. Run your test cases using ttrt
ttrt run /path/to/out.ttnn

Generate flatbuffer files using llvm-lit

There are already existing .mlir test cases under test/ttmlir/Silicon. You can use llvm-lit tool to generate the corresponding ttnn and ttm files.

  1. Build ttmlir
  2. Build ttrt (see building section on this page)
  3. Generate ttsys file from the system you want to compile for using ttrt. This will create a system_desc.ttsys file under ttrt-artifacts folder.
ttrt query --save-artifacts
  1. Export this file in your environment using export SYSTEM_DESC_PATH=/path/to/system_desc.ttsys. When llvm-lit is run, it will query this variable and generate the ttnn and ttm files using this system. Optionally, you can also provide this manually when running llvm-lit.
  2. Generate your test cases. This will generate all your ttnn and ttm files under build/test/ttmlir/Silicon. ttnn files have a .ttnn file extension and ttmetal files have a .ttm extension.
cmake --build build -- check-ttmlir
  1. (Optional) If you have a single .mlir file (or a directory of custom .mlir files) that you created using the compiler, and you want to generate the corresponding ttnn and ttm files for it, you can run llvm-lit standalone to the path of your .mlir file or directory of .mlir files to generate the flatbuffer executables. You will have to make sure you add in the correct llvm-lit configs into your .mlir file. See section on adding llvm-lit config options inside a .mlir file to create flatbuffer binaries for more info. You must also make sure your .mlir test is found within test/ttmlir/Silicon folder (and point lit to the build folder)!
llvm-lit -v ./build/test/ttmlir/Silicon
or
SYSTEM_DESC_PATH=/path/to/system_desc.ttsys llvm-lit -v ./build/test/ttmlir/Silicon
  1. Run your test cases using ttrt
ttrt run /path/to/test.ttnn
ttrt run /path/to/dir/of/flatbuffers

Adding llvm-lit config options inside a .mlir file to create flatbuffer binaries

Inside of your .mlir file, you can add certain config options that llvm-lit will use when running against that test case. For the purpose of generating flatbuffer executables, you can add --ttir-load-system-desc="path=%system_desc_path%" which will tell llvm-lit to parse the system desc found from the environment flag set by export SYSTEM_DESC_PATH=/path/to/system_desc.ttsys. You can also paste a custom path to a system desc file as well.

// RUN: ttmlir-opt --ttir-load-system-desc="path=%system_desc_path%" --ttir-implicit-device --ttir-layout --convert-ttir-to-ttnn %s  > %t.mlir
// RUN: FileCheck %s --input-file=%t.mlir
// RUN: ttmlir-translate --ttnn-to-flatbuffer %t.mlir > %t.ttnn

Adding new mlir test cases

You can copy your .mlir test file (with the appropriate llvm-lit config options for generating flatbuffer binaries) into test/ttmlir/Silicon. Then, follow generating flatbuffer files using llvm-lit to generate the executables to run!

Versioning

ttrt and flatbuffers have strict versioning check. When running a flatbuffer against ttrt, you have to make sure the flatbuffer was generated using the same version as ttrt (or vice versa). Major and Minor versions are manually set using github tags when releases are made. Patch versioning is the number of commits from the last major/minor tag.

vmajor.minor.patch

APIs

ttrt --help
ttrt read
ttrt run
ttrt query
ttrt perf
ttrt check

Command Line

There are different ways you can use the APIs under ttrt. The first is via the command line as follows. All artifacts are saved under ttrt-artifacts folder under TT_MLIR_HOME environment variable. By default, all logging is printed to the terminal. You can specify a log file to dump output to.

read

Read sections of a binary file

ttrt read --help
ttrt read --section mlir out.ttnn
ttrt read --section cpp out.ttnn
ttrt read --section version out.ttnn
ttrt read --section system_desc out.ttnn
ttrt read --section inputs out.ttnn
ttrt read --section outputs out.ttnn
ttrt read --section all out.ttnn
ttrt read --section all out.ttnn --clean-artifacts
ttrt read --section all out.ttnn --save-artifacts
ttrt read --section all /dir/of/flatbuffers
ttrt read system_desc.ttsys
ttrt read --section system_desc system_desc.ttsys
ttrt read system_desc.ttsys --log-file ttrt.log
ttrt read out.ttnn --save-artifacts --artifact-dir /path/to/some/dir
ttrt read out.ttnn --result-file result.json

run

Run a binary file or a directory of binary files Note: It's required to be on a system with silicon and to have a runtime enabled build -DTTMLIR_ENABLE_RUNTIME=ON.

ttrt run --help
ttrt run out.ttnn
ttrt run out.ttnn --seed 0
ttrt run out.ttnn --init arange
ttrt run out.ttnn --identity
ttrt run out.ttnn --identity --rtol 1 --atol 1
ttrt run out.ttnn --clean-artifacts
ttrt run out.ttnn --save-artifacts
ttrt run out.ttnn --loops 10
ttrt run --program-index all out.ttnn
ttrt run --program-index 0 out.ttnn
ttrt run /dir/of/flatbuffers
ttrt run /dir/of/flatbuffers --loops 10
ttrt run /dir/of/flatbuffers --log-file ttrt.log
ttrt run out.ttnn --save-artifacts --artifact-dir /path/to/some/dir
ttrt run out.ttnn --load-kernels-from-disk
ttrt run out.ttnn --enable-async-ttnn
ttrt run out.ttnn --result-file result.json
ttrt run out.ttnn --disable-golden
ttrt run out.ttnn --save-golden-tensors
ttrt run out.ttnn --debugger
ttrt run out.ttnn --memory --save-artifacts
ttrt run out.ttnn --memory --check-memory-leak

query

Query the system to obtain the system desc file (optionally store it to disk) Note: It's required to be on a system with silicon and to have a runtime enabled build -DTTMLIR_ENABLE_RUNTIME=ON.

ttrt query --help
ttrt query
ttrt query --quiet
ttrt query --save-artifacts
ttrt query --clean-artifacts
ttrt query --save-artifacts --log-file ttrt.log
ttrt query --save-artifacts --artifact-dir /path/to/some/dir
ttrt query --result-file result.json

perf

Run performance mode of a binary file or a directory of binary files Note: It's required to be on a system with silicon and to have a runtime enabled build -DTTMLIR_ENABLE_RUNTIME=ON. Also need perf enabled build -DTT_RUNTIME_ENABLE_PERF_TRACE=ON. Note: You can collect host only related performance data via --host-only flag. By default, host and device side performance data are both collected. If the saving artifacts flag is provided, perf mode will dump the following files in the artifacts directory

ops_perf_results.csv : compiled op performance results
profile_log_device.csv : dump of all device side profiled results
tracy_ops_data.csv : op data results dumped in a readable format
tracy_ops_times.csv : op time results dumped in a readable format
tracy_profile_log_host.tracy : tracy profiled results file, this file can be fed into the tracy GUI
ttrt perf --help
ttrt perf out.ttnn
ttrt perf out.ttnn --clean-artifacts
ttrt perf out.ttnn --save-artifacts
ttrt perf out.ttnn --loops 10
ttrt perf --program-index all out.ttnn
ttrt perf --program-index 0 out.ttnn
ttrt perf --host-only out.ttnn
ttrt perf /dir/of/flatbuffers --host-only
ttrt perf /dir/of/flatbuffers --loops 10 --host-only
ttrt perf /dir/of/flatbuffers --log-file ttrt.log --host-only
ttrt perf --save-artifacts --artifact-dir /path/to/some/dir
ttrt perf out.ttnn --result-file result.json
ttrt run out.ttnn --memory

To use the Tracy GUI, run the following instructions on your macbook. You can upload your .tracy file into the GUI to view the profiled dumps.

git clone https://github.com/tenstorrent-metal/tracy.git
cd tracy/profiler/build/unix
make all
./Tracy-release

check

Check a binary file or a directory of binary files against a system desc (by default, uses the host machine) Note: It's required to be on a system with silicon and to have a runtime enabled build -DTTMLIR_ENABLE_RUNTIME=ON.

ttrt check --help
ttrt check out.ttnn
ttrt check out.ttnn --system-desc /path/to/system_desc.ttsys
ttrt check out.ttnn --clean-artifacts
ttrt check out.ttnn --save-artifacts
ttrt check out.ttnn --log-file ttrt.log
ttrt check /dir/of/flatbuffers --system-desc /dir/of/system_desc
ttrt check --save-artifacts --artifact-dir /path/to/some/dir out.ttnn
ttrt check out.ttnn --result-file result.json

ttrt as a python package

The other way to use the APIs under ttrt is importing it as a library. This allows the user to use it in custom scripts.

Import ttrt as a python package

from ttrt.common.api import API

Setup API and register all features

API.initialize_apis()

Setup arguments

You can specify certain arguments to pass to each API, or use the default arguments provided

args

This can be a dictionary of values to set inside your API instance. These are the same options as found via the command line. You can get the total list of support arguments via ttrt help command line. Any argument not provided will be set to the default.

custom_args = {}
custom_args["--clean-artifacts"] = True
query_instance = API.Query(args=custom_args)

logging

You can specify a specific logging module you want to set inside your API instance. The rationale behind this is to support different instances of different APIs, all being able to be logged to a different file.

from ttrt.common.util import Logger

log_file_name = "some_file_name.log"
custom_logger = Logger(log_file_name)
read_instance = API.Read(logger=custom_logger)

artifacts

You can specify a specific artifacts directory to store all the generate metadata during the execution of any API run. This allows you to specify different artifact directories if you wish for different instances of APIs.

from ttrt.common.util import Artifacts

log_file_name = "some_file_name.log"
artifacts_folder_path = "/opt/folder"
custom_logger = Logger(log_file_name)
custom_artifacts = Artifacts(logger=custom_logger, artifacts_folder_path=artifacts_folder_path)
run_instance = API.Run(artifacts=custom_artifacts)

Execute API

Once all the arguments are setup, you can run your API instance with all your provided arguments. Note, APIs are stateless. Thus, subsequent calls to the same API instance will not preserve previous call artifacts. You can generate a new artifacts directory for subsequent runs if you wish to call the APIs multiple times, for example.

result_code, results = query_instance()
result_code, results = read_instance()
result_code, results = run_instance()

Putting it all together

You can do interesting stuff when combining all the above features into your python script

from ttrt.common.api import API
from ttrt.common.util import Logger
from ttrt.common.util import Artifacts

API.initialize_apis()

custom_args = {}
custom_args["--clean-artifacts"] = True
custom_args["--save-artifacts"] = True
custom_args["--loops"] = 10
custom_args["--init"] = "randn"
custom_args["binary"] = "/path/to/subtract.ttnn"

log_file_name = "some_file_name.log"
custom_logger = Logger(log_file_name)

artifacts_folder_path = "/opt/folder"
custom_artifacts = Artifacts(logger=custom_logger, artifacts_folder_path=artifacts_folder_path)

run_instance = API.Run(args=custom_args, logger=custom_logger, artifacts=custom_artifacts)
result_code, results = run_instance()

Bonus Section: Extending runtime to other FE's

MLIR Runtime exposes a feature to register a python callback function. Any python fuction can be provided - and this function will be executed after every op in MLIR Runtime. The following steps describe how to extend your application to register a python function.

  1. Pybind DebugHooks C++ class, specifically tt::runtime::debug::Hooks::get. See runtime/tools/python/ttrt/runtime/module.cpp for an example of how TTRT pybinds it.
tt::runtime::debug::Hooks
tt::runtime::debug::Hooks::get
  1. Register callback function in your python script. The following is registering a golden python function. Assume the Debug Hooks get function has been pybinded to ttrt.runtime.DebugHooks.get
callback_env = ttrt.runtime.DebugHooks.get(golden)
  1. The callback function has a particular function signature, which looks like the following
def golden(binary, programContext, opContext):

binary: reference to the binary you are currently running programContext: reference to the program currently running opContext: reference to the op that is currently running

  1. Each of these parameters has certain APIs exposed which can be called within the callback function
op_debug_str = ttrt.runtime.get_op_debug_str(opContext) : get the op debug str (ie you can parse this string to get the location of the op which is used as the key when indexing the golden tensors stored in the flatbuffer)
op_golden_tensor = binary.get_debug_info_golden(loc) : get the golden tensor from the binary as list of float32
op_output_tensor = ttrt.runtime.get_op_output_tensor(opContext, programContext) : get the currently running output tensor from device as list of float32
  1. A potential application for this callback function is implementing a golden callback. TTRT achieves this by first storing the golden data within the flatbuffer binary. See python/Passes.cpp - specifically ttnn_to_flatbuffer_file function for an example. This is used by python/test_infra/ttir_builder.py to construct flatbuffers with embedded golden data. You can store input/output/intermediate data within the flatbuffer. The choice of the map key for inputs/outputs is left to the golden implementor. The intermediate tensor key is derived from loc data for ttrt. External users can implement their own key/value logic. See runtime/tools/python/ttrt/common/golden.py for how ttrt implement the golden callback function.
std::unordered_map<std::string, mlir::tt::GoldenTensor> goldenMap
mlir::tt::ttnn::translateTTNNToFlatbuffer(moduleOp, file, goldenMap)

Note: ttrt is not needed to implement this callback feature. It aims to provide an example of how this callback feature can be implemented for golden application.

FAQ

Flatbuffer version does not match ttrt version!

  • ttrt and flatbuffer have strict versioning that is checked during ttrt execution. You will have to generate a flatbuffer using the same version of ttrt (or vice versa). This mean you might have to build on the same branch on which the flatbuffer was generated or regenerate the flatbuffer using your current build.

System desc does not match flatbuffer!

  • flatbuffers are compiled using a specific system desc (or default values if no system desc is provided). During runtime, the flatbuffer system desc is checked against the current system to ensure the system being run on supports the flatbuffer that was compiled. If you get this error, you will have to regenerate the flatbuffer using the system you want to run on. See generate a flatbuffer file from compiler section on how to do this.

I just want to test and push my commit! What do I do!

  • follow these steps (on both n150 and n300)
1. Build ttmlir (sample instructions - subject to change)
source env/activate
cmake -G Ninja -B build -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=clang-17 -DCMAKE_CXX_COMPILER=clang++-17 -DCMAKE_CXX_COMPILER_LAUNCHER=ccache -DTTMLIR_ENABLE_RUNTIME=ON -DTT_RUNTIME_ENABLE_PERF_TRACE=ON
cmake --build build

2. Build ttrt (sample instructions - subject to change)
cmake --build build -- ttrt

3. Query system
ttrt query --save-artifacts

4. Export system desc file
export SYSTEM_DESC_PATH=/path/to/system_desc.ttsys (path dumped in previous command)

5. Generate test cases
cmake --build build -- check-ttmlir

6. Run test cases
ttrt run build/test/ttmlir/Silicon

7. (Optional) Run perf test cases
ttrt perf build/test/ttmlir/Silicon