Dialects Overview

Here is a brief overview of the dialects in the project, please refer to the individual dialect documentation for more details.:

  • tt: Common types such as, tt.tile, tt.metal_layout, tt.grid, etc. and enums such as, data formats, memory spaces, iterator types etc.
  • ttir: A high level dialect that models the tensor compute graph on tenstorrent devices. Accepts tosa and linalg input.
    • ttir.generic: Generically describe compute work.
    • ttir.to_layout: Convert between different tensor memory layouts and transfer between different memory spaces.
    • tensor.pad: Pad a tensor with a value (ie. convs)
    • ttir.yield: return result memref of computation in dispatch region body, lowers to ttkernel.yield
    • ttir.kernel: lowers to some backend kernel
  • ttnn: A TTNN dialect that models ttnn API.
  • ttkernel: Tenstorrent kernel library operations.
    • ttkernel.noc_async_read
    • ttkernel.noc_async_write
    • ttkernel.cb_push_back
    • ttkernel.[matmul|add|multiply]: Computations on tiles in source register space, store the result in dest register space.
    • ttkernel.sfpu_*: Computations on tiles in dest register space using sfpu coprocessor.
  • ttmetal: Operations that dispatch work from host to device.
    • ttmetal.dispatch: Dispatch a grid of compute work.