ttnn.add_bw

ttnn.add_bw = Operation(python_fully_qualified_name='ttnn.add_bw', function=<ttnn._ttnn.operations.binary_backward.add_bw_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_bw>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Performs backward operations for add of input_tensor_a and input_tensor_b or scalar with given grad_tensor. Supports broadcasting.

Parameters:
  • grad_tensor (ComplexTensor or ttnn.Tensor) – the input gradient tensor.

  • input_tensor_a (ComplexTensor or ttnn.Tensor) – the input tensor.

  • input_tensor_b (ComplexTensor or ttnn.Tensor or Number) – the input tensor.

Keyword Arguments:
  • are_required_outputs (List[bool], optional) – List of required outputs. Defaults to [True, True].

  • memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.

  • input_grad (ttnn.Tensor, optional) – Preallocated output tensor for gradient of input_tensor_a. Defaults to None.

  • other_grad (ttnn.Tensor, optional) – Preallocated output tensor for gradient of input_tensor_b. Defaults to None.

  • queue_id (int, optional) – command queue id. Defaults to 0.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16, BFLOAT8_B

TILE

2, 3, 4

bfloat8_b/bfloat4_b is only supported on TILE_LAYOUT

Sharding is not supported if both inputs are tensors.

Example

>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.add_bw(grad_tensor, tensor1, tensor2)
>>> grad_tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device)
>>> scalar = 2
>>> output = ttnn.add_bw(grad_tensor, tensor1, scalar)