ttnn.isclose
- ttnn.isclose = Operation(python_fully_qualified_name='ttnn.isclose', function=<ttnn._ttnn.operations.binary.isclose_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_isclose>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes isclose for
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\begin{split}\mathrm{output\_tensor} = \begin{cases} 1, & \text{if } |\mathrm{input\_tensor\_a} - \mathrm{input\_tensor\_b}| \leq (\mathrm{atol} + \mathrm{rtol} \times |\mathrm{input\_tensor\_b}|) \\ 0, & \text{otherwise} \end{cases}\end{split}\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
rtol (float) – relative tolerance. Defaults to 1e-05f.
atol (float) – absolute tolerance. Defaults to 1e-08f.
equal_nan (bool) – if NaN values should be treated as equal during comparison. Defaults to False.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> rtol = 1e-4 >>> atol = 1e-5 >>> equal_nan = False >>> output = ttnn.isclose(tensor1, tensor2, rtol=rtol, atol=atol, equal_nan=equal_nan)