ttnn.scatter

ttnn.scatter(input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, *, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor

Computes scatter for input_tensor_a and input_tensor_b and returns the tensor with the same layout as input_tensor_a

\[\mathrm{output}_i = \verb|scatter|\left(\mathrm{input\_tensor\_a}_i , \mathrm{input\_tensor\_b}_i\right)\]
Parameters:
Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.

Returns:

ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

4

Example

>>> tensor1 = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> tensor2 = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.scatter(tensor1, tensor2)