ttnn.scatter
- ttnn.scatter(input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor, *, memory_config: ttnn.MemoryConfig | None = None) ttnn.Tensor
-
Computes scatter for
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{output}_i = \verb|scatter|\left(\mathrm{input\_tensor\_a}_i , \mathrm{input\_tensor\_b}_i\right)\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
4
Example
>>> tensor1 = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.scatter(tensor1, tensor2)