ttnn.atan2
- ttnn.atan2 = Operation(python_fully_qualified_name='ttnn.atan2', function=<ttnn._ttnn.operations.binary.atan2_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_atan2>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Computes atan2
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{output\_tensor}_i = \arctan\left(\frac{\mathrm{input\_tensor\_a}_i}{\mathrm{input\_tensor\_b}_i}\right)\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Input arguments for the atan2 function are in the format (y, x)
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.atan2(tensor1, tensor2)