ttnn.logical_or
- ttnn.logical_or(input_tensor_a: ttnn.Tensor, input_tensor_b: ttnn.Tensor or Number, *, memory_config: ttnn.MemoryConfig | None = None, dtype: ttnn.DataType | None = None, output_tensor: ttnn.Tensor | None = None, activations: List[str] | None = None, queue_id: int | None = 0) ttnn.Tensor
-
Computes logical OR of
input_tensor_a
andinput_tensor_b
and returns the tensor with the same layout asinput_tensor_a
\[\mathrm{{output\_tensor}}_i = \mathrm{{input\_tensor\_a}}_i \, | \, \mathrm{{input\_tensor\_b}}_i\]- Parameters:
-
input_tensor_a (ttnn.Tensor) – the input tensor.
input_tensor_b (ttnn.Tensor or Number) – the input tensor.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
dtype (ttnn.DataType, optional) – data type for the output tensor. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
activations (List[str], optional) – list of activation functions to apply to the output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Supports broadcasting.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
Example
>>> tensor1 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> tensor2 = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.logical_or(tensor1, tensor2/scalar)