ttnn.bitwise_not
- ttnn.bitwise_not = Operation(python_fully_qualified_name='ttnn.bitwise_not', function=<ttnn._ttnn.operations.unary.bitwise_not_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_bitwise_not>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Applies bitwise_not to
input_tensor
element-wise.\[\mathrm{{output\_tensor}}_i = \verb|bitwise_not|(\mathrm{{input\_tensor}}_i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor. Supported input range is [-2147483647, 2147483647].
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
INT32
TILE
2, 3, 4
torch.tensor([[1, 2], [3, 4]], dtype=torch.int32)
Example
>>> tensor = ttnn.from_torch(torch.rand([2, 2], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> output = ttnn.bitwise_not(tensor)