ttnn.experimental.dropout
- ttnn.experimental.dropout = Operation(python_fully_qualified_name='ttnn.experimental.dropout', function=<ttnn._ttnn.operations.experimental.dropout_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=None, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Applies dropout to
input_tensor
element-wise.\[\verb|dropout|(\mathrm{input\_tensor}_i)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
seed (uint32_t) – seed used for RNG.
probability (float) – Dropout probability. In average total_elems * probability elements will be zeroed out.
scale (float) – Scales output tensor. In general scale = 1.0/(1.0-probability).
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> seed = 124 >>> prob = 0.2 >>> output = ttnn.experimental.dropout(tensor, probability=prob, scale= 1.0/(1.0 - prob), seed=seed)