ttnn.polygamma_bw
- ttnn.polygamma_bw = Operation(python_fully_qualified_name='ttnn.polygamma_bw', function=<ttnn._ttnn.operations.unary_backward.polygamma_bw_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)
-
Performs backward operations for polygamma on
input_tensor
,scalar
with givengrad_tensor
.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor (ttnn.Tensor) – the input tensor.
n (float) – Order of polygamma function.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Example
>>> grad_tensor = ttnn.to_device(ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16)), device=device) >>> input = ttnn.to_device(ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16)), device=device) >>> output = ttnn.polygamma_bw(grad_tensor, input, float)