ttnn.clamp_bw
- ttnn.clamp_bw(grad_tensor: ttnn.Tensor, input_tensor: ttnn.Tensor, *, min: float = None, max: float = None, memory_config: ttnn.MemoryConfig = None) List of ttnn.Tensor
-
Performs backward operations for clamp on
input_tensor,min,maxwith givengrad_tensor.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
min (float, optional) – Minimum value. Defaults to None.
max (float, optional) – Maximum value. Defaults to None.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
2, 3, 4
Only one of min or max value can be None.
Example
# Create sample tensors grad_tensor = ttnn.from_torch( torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device ) input_tensor = ttnn.from_torch( torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device ) # Define min and max values for clamping min_val = 0.5 max_val = 2.0 # Call the clamp_bw function output = ttnn.clamp_bw(grad_tensor, input_tensor, min_val, max_val) logger.info(f"Clamped Output Backward: {output}")