ttnn.relu_max
- ttnn.relu_max(input_tensor: ttnn.Tensor, upper_limit: float, *, memory_config: ttnn.MemoryConfig | None = None, output_tensor: ttnn.Tensor | None = None, queue_id: int | None = 0) ttnn.Tensor
-
Applies relu_max to
input_tensor
element-wise with upper_limit.This function caps off the input to a max value and a min value of 0
\[\mathrm{output\_tensor}_i = \verb|relu_max|(\mathrm{input\_tensor}_i, \verb|upper_limit|)\]- Parameters:
-
input_tensor (ttnn.Tensor) – the input tensor.
upper_limit (float) – The max value for ReLU function.
- Keyword Arguments:
-
memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.
output_tensor (ttnn.Tensor, optional) – preallocated output tensor. Defaults to None.
queue_id (int, optional) – command queue id. Defaults to 0.
- Returns:
-
ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16, BFLOAT8_B
TILE
2, 3, 4
System memory is not supported.
Example
>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device) >>> upper_limit = 3 >>> output = ttnn.relu_max(tensor, upper_limit)