ttnn.polygamma

ttnn.polygamma = Operation(python_fully_qualified_name='ttnn.polygamma', function=<ttnn._ttnn.operations.unary.polygamma_t object>, preprocess_golden_function_inputs=<function default_preprocess_golden_function_inputs>, golden_function=<function _golden_function_polygamma>, postprocess_golden_function_outputs=<function default_postprocess_golden_function_outputs>, is_cpp_operation=True, is_experimental=False)

Performs polygamma function on input_tensor, decimals. it is supported for range 1 to 10 only

Parameters:
  • input_tensor (ttnn.Tensor) – the input tensor.

  • k (int) – k value.

Keyword Arguments:

memory_config (ttnn.MemoryConfig, optional) – Memory configuration for the operation. Defaults to None.

Returns:

ttnn.Tensor – the output tensor.

Note

Supported dtypes, layouts, and ranks:

Dtypes

Layouts

Ranks

BFLOAT16

TILE

2, 3, 4

Example

>>> tensor = ttnn.from_torch(torch.tensor([[1, 2], [3, 4]], dtype=torch.bfloat16), dtype=ttnn.bfloat16, layout=ttnn.TILE_LAYOUT, device=device)
>>> output = ttnn.polygamma(tensor, 3)