ttnn.prod_bw
- ttnn.prod_bw(grad_tensor: ttnn.Tensor, input_tensor: ttnn.Tensor, *, all_dimensions: bool | None = True, dim: int | None = 0, memory_config: ttnn.MemoryConfig | None = None) List of ttnn.Tensor
-
Performs backward operations for prod on
input_tensor
with givengrad_tensor
along all_dimensions or a particular dim.- Parameters:
-
grad_tensor (ttnn.Tensor) – the input gradient tensor.
input_tensor (ttnn.Tensor) – the input tensor.
- Keyword Arguments:
-
all_dimensions (bool, optional) – perform prod backward along all dimensions, ignores dim param. Defaults to True.
dim (int, optional) – dimension to perform prod backward. Defaults to 0.
memory_config (ttnn.MemoryConfig, optional) – memory configuration for the operation. Defaults to None.
- Returns:
-
List of ttnn.Tensor – the output tensor.
Note
Supported dtypes, layouts, and ranks:
Dtypes
Layouts
Ranks
BFLOAT16
TILE
4
For more details about BFLOAT8_B, refer to the BFLOAT8_B limitations.
Example
>>> grad_tensor = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16), layout=ttnn.TILE_LAYOUT, device=device) >>> input = ttnn.from_torch(torch.rand([1, 1, 32, 32], dtype=torch.bfloat16, requires_grad=True), layout=ttnn.TILE_LAYOUT, device=device) >>> all_dimensions = True >>> dim =0 >>> output = ttnn.prod_bw(grad_tensor, input, all_dimensions, dim)